Synthesis of Solid Superacid Catalyst with Acid Strength of $H_0 \le -16.04^{\text{T}}$

By MAKOTO HINO and **KAZUSHI ARATA*t**

(Hakodate Technical College, Tokura-cho, Hakodate 042, *and* t *Hokkaido University of Education,*

Hachiman-cho, Hakodate 040, *Japan*)

Summary **A** solid superacid catalyst with an acid strength of $H_0 \le -16.04$, which was active for reactions of propane and butane, was obtained by exposing $Zr(OH)_{4}$, prepared by the hydrolyses of $ZrOCl₂$ and $ZrO(NO₃)₂$, to 1 N H_2SO_4 and then calcining in air at 575–650 °C.

WE have synthesized a solid superacid with an acid strength of $H_0 \le -16.04$, the strongest surface-acid system known, and which can be used at temperatures of up to $650 °C$; this catalyst also showed a superacid strength of *H,* ≤ -13.75 , with heat-treatment, even at 800 °C.

The catalyst was prepared as follows. $Zr(OH)_4$ was obtained by hydrolysing ZrOCl₂.8H₂O and ZrO(NO₃)₂.2H₂O with aqueous ammonia, washing, drying at $100 °C$, and powdering the precipitates below a 100 mesh. The commercial hydroxide Zr(OH)₄.xH₂O (Nakarai Chemicals, Ltd.) was also used. The hydroxides (2 *g)* were exposed to 1 N $H₂SO₄$ (30 ml) on a filter paper followed by drying, calcining in a Pyrex tube in air for 3 h, and finally sealing in an ampoule until use. The catalysts thus prepared from $ZroCl_2·8H_2O$, $Zro(NO_3)_2·2H_2O$, and the commercial $Zr(OH)_4 \cdot xH_2O$ are referred to as ZrO_2-I , -II, and -III, respectively.

60 Conversion into isobutane and propane/% 50 40 $30¹$ 20 10 $\mathbf 0$ 400 500 600 700 800 *^T***(calcination)** / **OC**

FIGURE. Reaction of butane over Zr0,-I (O), Zr0,-I1 **(e),** and ZrOz-III **(A):** solid lines, at **180** "C; dashed line, at **130** "C. Propane yields **A (17%),** B(10%), **C(4%), D(O%).**

The catalytic activities for the reaction of butane (C_4) were examined and the results are shown as a function of calcination temperature of the catalyst in the Figure. The reaction was carried out in a microcatalytic pulse reactor with a fixed-bed catalyst (flow rate of He carrier gas 10 ml min-1; pulse size **0.05** ml; catalyst 0.3 g). The catalyst was again heated at 400 °C for 1.5 h in the He flow before reaction. Effluent products were directly introduced into a gas chromatographic column for analysis (Porapak R-2m, at 110 °C). Conversions were taken as the average from the first to the fifth pulse value. Since conversions increased until the fifth pulse for the reaction over ZrO_2 -I at 130 °C, the average values from the sixth to the tenth pulse reaction are shown. The maximum activity was observed with calcination at $625-650$ °C for $ZrO₂-I$, 575 °C for ZrO_2 -II, and 650 °C for ZrO_2 -III. The products were isobutane $(i-C_4)$ and propane (C_3) . Propane was observed as a minor material when conversions were $>20\%$ at 180 °C. Only isobutane was formed over $ZrO₂$ -I at 130 "C.

The reaction of butane was carried out in a recirculation reactor at 25 °C over $ZrO₂$ -I calcined at 650 °C, together with the catalyst treated at 500 °C for comparison [volume] 170 ml; catalyst 0.3 g; butane 15 ml (normal temperature and pressure)]. The results are shown in Table **1.** Pentane (C_5) and isopentane (i-C₅) were observed as products in addition to C_3 and i- C_4 . The amount of butane produced after 48 h, 34.2% , is close to that of the equilibrium mixture of C_4 and i- C_4 at 25 °C, 27 and 73%, respectively.²

TABLE 1. Reaction of butane over $ZrO₂$ -I at 25 °C.

T (calcination)/	Product distribution/ $\frac{9}{6}$ ^a					
°C.	t/h	$C_{\rm s}$	C_{4}	i -C,	$\mathsf{C}_\mathbf{s}$	$i - C_n$
500 ^b	48	T٥	90.5	$9 - 5$		0
650 ^b	24	0.7	78.9	$20 - 4$	0	ፐ
	48	1.3	$59 - 7$	37.7	т	1.3
650 ^c	24	1.1	$68 - 4$	30.5	0	Υ
	48	4.8	34.2	$57 - 8$	Ͳ	$3-2$

^aC,, C,, **i-C4,** C,, and i-C, indicate propane, butane, isobutane, pentane, and isopentane, respectively. **b** The catalyst was heated again in air at 500 "C for **1.5** h before reaction. **C** The catalyst was evacuated at **250** *"C* for **3** h at **10-2--10-3** mmHg before the reaction. $dT = Trace$.

The catalyst ZrO-I, heat-treated at 650 °C, also converted propane into methane and ethane at **280** "C under pulse reaction conditions (carrier of He 10 ml min-l; pulse size 0.05 ml; catalyst 0.6 **g)** ; yields of methane and ethane were 5.1 and 1.3% in the first pulse, 3.9 and 0.8% in the fifth pulse, and **3.7** and **0.8%** in the tenth pulse reaction, respectively.

The acid strength of these catalysts was examined by a colour change method using Hammett indicators; the indicator is added to a powdered sample placed in sulphuryl chloride.³ The results with the indicators *m*-nitrochloro-
benzene (pK_a - 13.16), 2,4-dinitrotoluene (-13.75), 2,4benzene $(pK_a - 13.16)$, 2,4-dinitrotoluene (-13.75) , 2,4-dinitrofluorobenzene (-14.52) , and 1,3,5-trinitrobenzene (-16.04) are shown in Table 2. The acid strengths of $ZrO₂-I$ (650 °C) and $ZrO₂-II$ (575 °C) are estimated to be $H_0 \le -16.04$, which is higher than $H_0 \le -14.52$ regarded $H_0 \le -16.04$, which is higher than $H_0 \le -14.52$ regarded as the strongest surface-acid known;³ that for ZrO₂-III (650 °C) being $H_0 \le -14.52$. It is of considerable interest that the catalyst, even when heat-treated at quite a high temperature (800 °C), is still a superacid with an acid

TABLE 2 Measurement of the acid strength of the catalyst

	pK_a Value of the Hammett indicator				
Catalyst $(T^a)^{\circ}C$	-13.16		$-13\,75$ $-14\,52$ $-16\,04$		
$ZrO0-I$ (500)	$+p$		$+^{\circ}$	d	
$ZrO2-I$ (650)	$+$	┿	$^{+}$	$^{+}$	
$ZrO2-I$ (800)	∸	土		MARINE	
$ZrO2-II$ (575)		$^{+}$		┿	
$ZrO9-III$ (650)				-	

8 Calcination temperature Acidic colour of the indicator was observed bdistinctly, eslightly, and dwas not observed on the surface

strength higher than H_0 -13.75 The solid superacids $SO_2 - Al_2O_3$ and $SbF_5 - TiO_2 - SiO_2$, whose acid strengths are higher than that of 100% H_2SO_4 ($H_0 - 11.9$)⁴ are estimated to have strengths $-12.70 < H_0 < -11.95$ ² are estimated to have strengths $-12.70 < H_0 < -11.35$ ³ and $-14.52 < H_0 < -13.75$ ⁵ respectively

X-Ray photoelectron and i r spectra showed the ZrO_{3 -I}, -11, and -111 catalysts to possess the bidentate sulphate ion co-ordinated to the metal The existence of both Bronsted and Lewis acid sites was shown by the i r spectra of pyridine adsorbed on $ZrO₂-I$ (650 °C) With regard to the crystalline structure, the sulphate-treated materials were very different from those not treated in this way The catalysts ZrO_2-I (650 °C), ZrO_2-II (575 °C), and ZrO_2-III (650 °C) all showed the tetragonal X -ray pattern Specific surface areas of the catalysts were much larger than those of the oxides which had not undergone the sulphate treatment

(Recezved, **29th** *May* **1980,** *Corn* **573.)**

¹ For previous article in the series 'Solid Catalysts treated with Anions' see M Hino and K Arata, *Chem Lett*, 1980, 963
² F D Rossini, 'Physical Chemistry of Hydrocarbons,' Academic Press, New York, 1950
³ M Hino a

-
-
- * G **A** Olah, G K S Prakash, and J Sommer, *Sczence,* **1979, 206, 13** K Tanabe and H Hattori, *Chew Lett,* **1976, 625**
-