Synthesis of Solid Superacid Catalyst with Acid Strength of $H_0 \leq -16.04^{11}$

By MAKOTO HINO and KAZUSHI ARATA*†

(Hakodate Technical College, Tokura-cho, Hakodate 042, and *†Hokkaido* University of Education,

Hachiman-cho, Hakodate 040, Japan)

Summary A solid superacid catalyst with an acid strength of $H_0 \leq -16.04$, which was active for reactions of propane and butane, was obtained by exposing $Zr(OH)_4$, prepared by the hydrolyses of $ZrOCl_2$ and $ZrO(NO_3)_2$, to $1 \ge H_2SO_4$ and then calcining in air at 575-650 °C.

We have synthesized a solid superacid with an acid strength of $H_0 \leqslant -16.04$, the strongest surface-acid system known, and which can be used at temperatures of up to 650 °C; this catalyst also showed a superacid strength of $H_0 \leqslant -13.75$, with heat-treatment, even at 800 °C.

The catalyst was prepared as follows. $Zr(OH)_4$ was obtained by hydrolysing $ZrOCl_2 \cdot 8H_2O$ and $ZrO(NO_3)_2 \cdot 2H_2O$ with aqueous ammonia, washing, drying at 100 °C, and powdering the precipitates below a 100 mesh. The commercial hydroxide $Zr(OH)_4 \cdot xH_2O$ (Nakarai Chemicals, Ltd.) was also used. The hydroxides (2 g) were exposed to 1 N H_2SO_4 (30 ml) on a filter paper followed by drying, calcining in a Pyrex tube in air for 3 h, and finally sealing in an ampoule until use. The catalysts thus prepared from $ZrOCl_2 \cdot 8H_2O$, $ZrO(NO_3)_2 \cdot 2H_2O$, and the commercial $Zr(OH)_4 \cdot xH_2O$ are referred to as ZrO_2 -I, -II, and -III, respectively.

60 50 40 30 20 10 0 40 500 60 77 (calcination) / °C

FIGURE. Reaction of butane over ZrO_2 -I (\bigcirc), ZrO_2 -II (\bigcirc), and ZrO_2 -III (\blacktriangle): solid lines, at 180 °C; dashed line, at 130 °C. Propane yields A (17%), B(10%), C(4%), D(0%).

The catalytic activities for the reaction of butane (C_4) were examined and the results are shown as a function of calcination temperature of the catalyst in the Figure. The reaction was carried out in a microcatalytic pulse reactor with a fixed-bed catalyst (flow rate of He carrier gas 10 ml min⁻¹; pulse size 0.05 ml; catalyst 0.3 g). The catalyst was again heated at 400 °C for 1.5 h in the He flow before reaction. Effluent products were directly introduced into a gas chromatographic column for analysis (Porapak R-2m, at 110 °C). Conversions were taken as the average from the first to the fifth pulse value. Since conversions increased until the fifth pulse for the reaction over ZrO₂-I at 130 °C, the average values from the sixth to the tenth pulse reaction are shown. The maximum activity was observed with calcination at 625—650 °C for ZrO₂-I, 575 °C for ZrO₂-II, and 650 °C for ZrO₂-III. The products were isobutane (i-C₄) and propane (C₃). Propane was observed as a minor material when conversions were >20% at 180 °C. Only isobutane was formed over ZrO₂-I at 130 °C.

The reaction of butane was carried out in a recirculation reactor at 25 °C over ZrO_2 -I calcined at 650 °C, together with the catalyst treated at 500 °C for comparison [volume 170 ml; catalyst 0.3 g; butane 15 ml (normal temperature and pressure)]. The results are shown in Table 1. Pentane (C₅) and isopentane (i-C₅) were observed as products in addition to C₃ and i-C₄. The amount of butane produced after 48 h, 34.2%, is close to that of the equilibrium mixture of C₄ and i-C₄ at 25 °C, 27 and 73%, respectively.²

TABLE 1. Reaction of butane over ZrO₂-I at 25 °C.

T(calcination)/	Product distribution/%						
°C ″	t/h	C ₈	C4	i-C₄	Ć _s ´°	i-C ₅	
500ъ	48	T۹	90·5	9.5	0	0	
650 ^b	24	0.7	78 ·9	20.4	0	Т	
	48	1.3	59.7	37.7	Т	1.3	
650°	24	1.1	68·4	30.5	0	Т	
	48	4.8	$34 \cdot 2$	57.8	Т	$3 \cdot 2$	

^b C₃, C₄, i-C₄, C₅, and i-C₅ indicate propane, butane, isobutane, pentane, and isopentane, respectively. ^b The catalyst was heated again in air at 500 °C for 1.5 h before reaction. ^c The catalyst was evacuated at 250 °C for 3 h at 10^{-2} — 10^{-3} mmHg before the reaction. ^d T = Trace.

The catalyst ZrO-I, heat-treated at 650 °C, also converted propane into methane and ethane at 280 °C under pulse reaction conditions (carrier of He 10 ml min⁻¹; pulse size 0.05 ml; catalyst 0.6 g); yields of methane and ethane were 5.1 and 1.3% in the first pulse, 3.9 and 0.8% in the fifth pulse, and 3.7 and 0.8% in the tenth pulse reaction, respectively.

The acid strength of these catalysts was examined by a colour change method using Hammett indicators; the indicator is added to a powdered sample placed in sulphuryl chloride.³ The results with the indicators *m*-nitrochlorobenzene (pK_a -13·16), 2,4-dinitrotoluene (-13·75), 2,4dinitrofluorobenzene (-14·52), and 1,3,5-trinitrobenzene (-16·04) are shown in Table 2. The acid strengths of ZrO₂-I (650 °C) and ZrO₂-II (575 °C) are estimated to be $H_0 \leq -16\cdot04$, which is higher than $H_0 \leq -14\cdot52$ regarded as the strongest surface-acid known;³ that for ZrO₂-III (650 °C) being $H_0 \leq -14\cdot52$. It is of considerable interest that the catalyst, even when heat-treated at quite a high temperature (800 °C), is still a superacid with an acid

 TABLE 2
 Measurement of the acid strength of the catalyst

	pK_{B} Value of the Hammett indicato					
Catalyst $(T^a/^{\circ}C)$	13-16	-1375	-1452	-16 04		
ZrO ₂ -I (500)	+р	+	+ c	d		
ZrO ₂ -I (650)	+	+	÷	+		
$ZrO_{2}-I$ (800)	+	±				
ZrO_2 -II (575)	+	+	+	+		
ZrO ₂ -III (650)	+	+	+	—		

* Calcination temperature Acidic colour of the indicator was observed bdistinctly, cslightly, and dwas not observed on the surface

strength higher than H_0 –13.75 The solid superacids SiO_2 -Al₂O₃ and SbF_5 -TiO₂-SiO₂, whose acid strengths are higher than that of 100% H_2SO_4 $(H_0 - 11.9)^4$ are estimated to have strengths $-12.70 < H_0 \leq -11.35^3$ and $-14.52 < H_0 \leq -13.75$,⁵ respectively

X-Ray photoelectron and 1 r spectra showed the ZrO_{2} -I. -II, and -III catalysts to possess the bidentate sulphate ion co-ordinated to the metal The existence of both Bronsted and Lewis acid sites was shown by the ir spectra of pyridine adsorbed on ZrO2-I (650 °C) With regard to the crystalline structure, the sulphate-treated materials were very different from those not treated in this way The catalysts $\rm ZrO_2\mathchar`-I$ (650 °C), $\rm ZrO_2\mathchar`-II$ (575 °C), and $\rm ZrO_2\mathchar`-III$ (650 °C) all showed the tetragonal X-ray pattern Specific surface areas of the catalysts were much larger than those of the oxides which had not undergone the sulphate treatment

(Received, 29th May 1980, Com 573.)

¹ For previous article in the series 'Solid Catalysts treated with Anions' see M Hino and K Arata, *Chem Lett*, 1980, 963 ² F D Rossini, 'Physical Chemistry of Hydrocarbons,' Academic Press, New York, 1950

- ³ M Hino and K Arata, J Chem Soc, Chem Commun, 1979, 1148 ⁴ G A Olah, G K S Prakash, and J Sommer, Science, 1979, 206, 13 ⁵ K Tanabe and H Hattori, Chem Lett, 1976, 625